Dgl repeat_interleave

WebThe function is commonly used as a *readout* function on a batch of graphs to generate graph-level representation. Thus, the result tensor shape depends on the batch size of … WebDec 7, 2024 · 1 Answer Sorted by: 1 Provided you're using PyTorch >= 1.1.0 you can use torch.repeat_interleave. repeat_tensor = torch.tensor (num_repeats).to (X.device, torch.int64) X_dup = torch.repeat_interleave (X, repeat_tensor, dim=1) Share Improve this answer Follow edited Dec 7, 2024 at 19:36 answered Dec 7, 2024 at 15:07 jodag 18.6k 5 …

InfoGraph example fails on GPU - lightrun.com

Webg_r_repeat_interleave gets {gr1,gr1,…,gr1,gr2,gr2,…,gr2,...} where each node embedding is repeated n_nodes times. 184 g_r_repeat_interleave = g_r.repeat_interleave(n_nodes, dim=0) Now we add the two tensors to get {gl1 + gr1,gl1 + gr2,…,gl1 +grN,gl2 + gr1,gl2 + gr2,…,gl2 + grN,...} 192 g_sum = g_l_repeat + g_r_repeat_interleave WebDec 11, 2024 · Are you trying to create a multigraph (where multiple edges may exist between the same node pair)? If so, please specify multigraph=True. If not, currently … grand blanc township trick or treat https://bopittman.com

dgl.DGLGraph.reverse — DGL 1.1 documentation

WebTensor.repeat_interleave(repeats, dim=None, *, output_size=None) → Tensor. See torch.repeat_interleave (). Next Previous. © Copyright 2024, PyTorch Contributors. Built … WebOct 18, 2024 · hg = dgl.heterograph ( { ('a', 'etype_1', 'a'): ( [0,1,2], [1,2,3]), ('a', 'etype_2', 'a'): ( [1,2,3], [0,1,2]), }) sampler = dgl.dataloading.MultiLayerFullNeighborSampler (1,return_eids=True) collator = dgl.dataloading.NodeCollator (hg, {'a': [1]}, sampler) dataloader = torch.utils.data.DataLoader ( collator.dataset, collate_fn=collator.collate, … WebRead the Docs v: latest . Versions latest 1.0.x 0.9.x 0.8.x 0.7.x 0.6.x Downloads On Read the Docs Project Home chinchilla neighbourhood centre

repeat vs repeat_interleave in PyTorch - YouTube

Category:Func `metapath_reachable_graph` error with class `dgl…

Tags:Dgl repeat_interleave

Dgl repeat_interleave

dgl.broadcast_edges — DGL 1.0.2 documentation

Webdgl.broadcast_edges(graph, graph_feat, *, etype=None) [source] Generate an edge feature equal to the graph-level feature graph_feat. The operation is similar to numpy.repeat (or torch.repeat_interleave ). It is commonly used to normalize edge features by a global vector. For example, to normalize edge features across graph to range [ 0 1): Webdgl.reverse¶ dgl. reverse (g, copy_ndata = True, copy_edata = False, *, share_ndata = None, share_edata = None) [source] ¶ Return a new graph with every edges being the …

Dgl repeat_interleave

Did you know?

WebThis is different from torch.Tensor.repeat () but similar to numpy.repeat. Parameters: input ( Tensor) – the input tensor. repeats ( Tensor or int) – The number of repetitions for each … Note. This class is an intermediary between the Distribution class and distributions … WebSep 29, 2024 · Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric. - 3DInfomax/qmugs_dataset.py at master · HannesStark/3DInfomax

Webpos_score = torch.sum (src_emb * dst_emb, dim=-1) if src_emb.shape != neg_dst_emb.shape: src_emb = torch.repeat_interleave ( src_emb, neg_dst_emb.shape [-2], dim=-2 ).reshape (neg_dst_emb.shape) neg_score = torch.sum (src_emb * neg_dst_emb, dim=-1) return pos_score, neg_score WebGo to DGL/examples folder. Run semisupervised eample. DGL Version (e.g., 1.0): 0.6.1. Backend Library & Version (e.g., PyTorch 0.4.1, MXNet/Gluon 1.3):1.11.0. OS (e.g., …

WebFeb 20, 2024 · For a general solution working on any dimension, I implemented tile based on the .repeat method of torch’s tensors: def tile (a, dim, n_tile): init_dim = a.size (dim) repeat_idx = [1] * a.dim () repeat_idx [dim] = n_tile a = a.repeat (* (repeat_idx)) order_index = torch.LongTensor (np.concatenate ( [init_dim * np.arange (n_tile) + i for i in ... Web133 g_repeat = g.repeat(n_nodes, 1, 1) g_repeat_interleave gets {g1,g1,…,g1,g2,g2,…,g2,...} where each node embedding is repeated n_nodes times. 138 g_repeat_interleave = g.repeat_interleave(n_nodes, dim=0) Now we concatenate to get {g1∥g1,g1∥g2,…,g1∥gN,g2∥g1,g2∥g2,…,g2∥gN,...} 146 g_concat = torch.cat( …

Webdgl.add_self_loop. Add self-loops for each node in the graph and return a new graph. g ( DGLGraph) – The graph. The type names of the edges. The allowed type name formats …

WebApr 28, 2024 · About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features Press Copyright Contact us Creators ... chinchilla newspaper onlineWebJul 1, 2024 · Say, mask is of shape N, T, S, then with torch.repeat_interleave (mask, num_heads, dim=0) each mask instance (in total there are N instances) is repeated num_heads times and stacked to form num_heads, T, S shape array. Repeating this for all such N masks we'll finally get an array of shape: chinchilla my school presidentWebdgl.remove_self_loop¶ dgl. remove_self_loop (g, etype = None) [source] ¶ Remove self-loops for each node in the graph and return a new graph. Parameters. g – The graph. … chinchilla names boyWebtorch.cumsum(input, dim, *, dtype=None, out=None) → Tensor Returns the cumulative sum of elements of input in the dimension dim. For example, if input is a vector of size N, the result will also be a vector of size N, with elements. y_i = x_1 + x_2 + x_3 + \dots + x_i yi = x1 +x2 +x3 +⋯+xi Parameters: input ( Tensor) – the input tensor. chinchilla needs as a petWebAbout Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features Press Copyright Contact us Creators ... grand blanc water outageWebOct 1, 2024 · However, the function torch.repeat_interleave () is not found: x = torch.tensor ( [1, 2, 3]) x.repeat_interleave (2) gives AttributeError: 'Tensor' object has no attribute … grand blanc township property tax searchWebAug 19, 2024 · Repeat_interleave Description. Repeat_interleave Usage torch_repeat_interleave(self, repeats, dim = NULL, output_size = NULL) Arguments. self (Tensor) the input tensor. repeats (Tensor or int) The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. dim grand blanc toyota service